Wind Industry Loses Support of Lunatic Fringe: Green-Left Blog ‘New Matilda’ Turns Against the Wind Power Fraud

turbine-collapse-germany1

Even New Matilda thinks it’s a ‘flop’…

****

When the following piece crossed STT’s inbox, the editor thought it to be some kind of April fool’s joke, delivered a few months early.

But, no. Knock us down with a feather, the article that follows did, in fact, appear on ‘New Matilda’ – a politically correct, hard-‘green’-left bastion for all things cuddly and fuzzy (mostly its logic) – and, until now, a safe-haven for the dwindling wind-worship-cult.

But, not any more. The article was penned by Geoff Russell – who would blend in perfectly with the mung bean and tofu crowd, as his PC, CV attests:

Geoff Russell qualified in mathematics and has written software all of his working life. But in the past decade has devoted increasing time to writing non-fiction with a simple goal … make the world a better place. A three decade vegan and member of the Animal Justice Party, his first book in 2009 was “CSIRO Perfidy” a critique of the high-red-meat CSIRO “Total Wellbeing diet”; the most environmentally destructive diet on the planet. His concerns about climate change and the ineffectiveness of renewables led to a reexamination of his lifelong opposition to nuclear power. After considerable research he realised that the reasons people fear nuclear are built on obsolete knowledge about DNA and cancer. His second book “GreenJacked! Derailing environmental action on climate change” is an e-book available on Amazon. He has been a regular contributor to BraveNewClimate.com since 2008 and has had pieces published in “The Monthly”, “Australasian Science” and a number of Australian newspapers.

Now, pinch yourself and enjoy what must have had New Matilda regulars choking on their organic Pinot Gris. Oh, and to help Geoff get his point across we’ve added a few pics, courtesy of the boys over at Aneroid Energy.

Capacity Factors And Coffee Shops: A Beginner’s Guide To Understanding The Challenges Facing Wind Farms
New Matilda
Geoff Russell
13 January 2016

It’s still ‘all about the baseload’, writes Geoff Russell, in this simple guide to understanding the limitations of energy sources like wind farms.

Renewable-only advocates claim that we can build a reliable, clean electricity system using mostly unreliable sources; like wind and solar power. And of course we can; the theory is simple, just build enough of them.

Coffee shops operate rather like our current electricity system; there are a few permanent staff who are analogous to what are called baseload power stations. Additional staff are hired to cover the busy period(s) and correspond typically to gas fired generators.

The renewable alternative is like running a coffee shop with a crew of footloose narcoleptics who arrive if and when they feel like it and who can nod off with little notice. Would this work? Of course; just hire enough of them.

Any criticisms of renewable plans is typically subjected to execution by slogan: That’s soooo last millennium; baseload is a myth!

I’ve used something like this coffee shop analogy elsewhere, but it doesn’t capture other critical features of electricity sources … let’s begin with the capacity factor.

Capacity factor

When someone talks about a “100 megawatt” wind farm, this refers to its maximum power output when the wind is blowing hard. Energy is power multiplied by time, so if it’s windy for 24 hours you’ll get 24 x 100 = 2400 megawatt-hours (MWh) of electrical energy. But actual output over the course of a year is obviously only a percentage of the maximum possible and that percentage is measured and called the capacity factor; typically about 33 percent for wind.

A rooftop solar system is also labelled according to its maximum output and also has a capacity factor… averaging 14 percent in Australia but only 9 or 10 percent in the UK or Germany.

Nuclear plants also have capacity factors because they usually need to be taken off line every year or two for refuelling. Typical percentages are 90 in the US and 96 in South Korea.

You can’t compare electricity sources without understanding capacity factors. Since the capacity factor of a nuclear plant is about 90 percent and that of rooftop solar is about 14 percent and because 90/14 = 6.429, then you’d need to install 9,000 megawatts worth of solar panels to match the amount of electricity you’d get from a 1400 megawatt South Korean APR1400 nuclear reactor over a year (6.429 x 1400 = 9,000).

Which is more than double the 4041 megawatts installed in Australia between 2007 and the end of 2014.

Matching supply and demand

But 9,000 megawatts of solar panels is still very different to 1,400 megawatts of nuclear, even if both produce the same amount of electricity annually. With 9,000 megawatts of PV panels, you don’t control the output and on any day it will range from nothing at night through to 9,000 megawatts if it’s hot, cloudless and the right time of day.

In contrast, 1,400 megawatts of nuclear power can be adjusted to match demand; turn it down, turn it up.

Below is a picture of the output of some German nuclear plants. Note that the output of one plant, KKI 1 (Isar), is pretty constant. That plant began operation in 1979, which is about the vintage of the seemingly immortal but obviously false anti-nuclear claim that nuclear plants can’t follow load; see Margaret Beavis’s recent NM article for a 2015 misstatement.

Brokdorf, on the other hand, is a little newer and has been operating since 1986 and has no trouble ramping up and down. Not only can most nuclear plants load-follow (this is the technical term), it’s increasingly necessary in Germany because of the growth of wind and solar; it’s a thankless task but somebody has to do it!

Nuclear-load-follow-graph

Now you understand why it’s silly to do what non-technical journalists like Bernard Keane have done, and compare costs per kilowatt of solar with those of nuclear without understanding the capacity factor; let alone grid costs or load-following.

But the capacity factor is also important for another deeper reason and it will take us back to that coffee shop.

First, imagine a small city with a constant electrical demand of 1,000 megawatts and a wind farm supplying, on average, 333 megawatts. Assume the rest is supplied by gas. Given the capacity factor of wind, we can infer that the peak output of that wind farm is about 1,000 megawatts.

What happens to excess electricity?

Now consider what happens if you triple the size of your wind farm.

Since you now have (a maximum of) 3,000 megawatts of wind power, you’ll be averaging 0.33 x 3,000 x 24 megawatt-hours (of energy) per day; which is 100 percent of demand; excellent.

But what happens when it’s really windy? The output is then triple the demand; so, without storage, that electricity gets dumped.

Dumping electricity on your neighbours isn’t a nice thing to do if they don’t need it at the time.

Wind farms, like any low capacity factor unreliable electricity source, are fine when they are a small contributor to a large grid, but not so fine when their surges are large relative to the demand on the grid; then they become a veritable bull in a china shop.

June 2015 National

[total output from all wind farms connected to the Eastern Grid, June 2015]

How does this look in coffee shop terms? If you run your coffee shop with a large bunch of narcoleptic staff, then some of the time they’ll all be awake and rearing to go, but there’ll be few customers and your staff will be twiddling their thumbs at best and getting in each others way at worst.

But perhaps the analogy is broken? Instead of a single wind farm, we could have multiple farms spread over a huge area and interconnected so that the wind must surely even out; never blowing hard (nor totally calm) at all sites. Certainly this sounds plausible… but what actually happens?

John Morgan looked at the Australian data on wind power in an article a couple of months ago on bravenewclimate.com.

In the 12 months to September 2015, Australia had 3,753 megawatts of wind power across the National Electricity Market (which excludes WA which isn’t connected) and the daily average output ranged from 2.7 percent (101 megawatts for 24 hours) to 86 percent (3,227 megawatts for 24 hours).

This isn’t so different from what would happen with a single 3,753 megawatt wind farm. So despite expectations, there were times when it was pretty windy almost everywhere and other times, including runs of multiple days, when it was pretty damn still almost everywhere.

The overall capacity factor was measured at 29 percent. So despite expectations, many wind farms, even in a big country like Australia, aren’t that much different to one very big one. And you really do have to worry about being becalmed.

JULY22

[total output from all wind farms connected to the Eastern Grid, 22 July 2014]

I argued in my last New Matilda article that wasting battery capacity papering over the deficiencies of wind and solar will reduce our ability to solve our clean transportation problems.

Copper plates and real networks

Clearly if many wind farms are intended to even out supply, then they need to be interconnected.

A study commonly cited in Australia supporting the feasibility of a 100 percent renewable system is that of Elliston, Diesendorf and MacGill.

One assumption of that study was that electricity can flow freely from where-ever it is generated to where-ever it is needed.

This is called the “copper plate” assumption; it assumes the continent is just one massive copper plate conducting electricity everywhere at high speed.

But real interconnectors have to be built, and how much connectivity do low capacity factor sources need? A European study found that the grid capacity to transfer electricity under a 100 percent renewable scenario needs to be ramped up by between 5.7 and 11.5 times; depending on the quality of service required.

The “flow freely” assumption occupied just one sentence of the Australian study but conceals a wealth of problems and complexity. The EU goal is that member countries provide interconnection capacity equal to just 10 percent of installed capacity… by 2020.

The need for extra national interconnections is mirrored internally within the larger countries by the need for extra internal interconnections. In Germany this is being implemented under the Power Grid Expansion Act (EnLAG) involving 3,800 kilometers of new extra-high voltage lines.

These lines aren’t being built without protest. The path of least resistance will be wildlife habitat; to avoid concerns both real and imagined over reducing property prices and health risks.

To extend the coffee shop analogy to cover distributed wind farms, we move from a single shop to a WindyBucks Chain of shops spread over the country.

The European study implies that making this work will require not just extra staff but a fleet of lightening fast taxis to shunt the staff around from shop to shop. This is so that when we have too many baristas in Cairns, we can shunt them down to cover for those having a kip in Hobart.

Again, the theory is simple; just add another layer of duct tape until it holds together.

Markets, profits and planning

There’s one not so obvious way in which the coffee shop analogy breaks down. Coffee shop staff get paid by the hour, not by the number of coffees they make; but users of electricity pay for what they use, not for what is generated.

Does anybody want to pay 10 times the going rate for a coffee just because there happen to be 10 grinning baristas twiddling their thumbs behind the Espresso machine?

If not, then consider what happens to electricity prices during our imagined tripling of wind capacity. Remember, we started by assuming wind provided about 30 percent of electrical energy, so when we triple the number of farms and the wind is blowing pretty strongly everywhere, they’ll be generating about triple what we want.

In a free electricity market where suppliers bid for electricity, the price will dive. So while it’s very profitable to build a wind farm when total wind energy is less than the capacity factor, it soon becomes very unprofitable because nobody wants your product; you also create a mess that somebody has to clean up by building extra grid magic to handle power surges.

Why didn’t people see this coming a decade ago? Probably somebody did, but they were “Sooo last millennium”!

This market failure gets worse and worse as wind penetration exceeds the capacity factor. Our whole climate mess can be viewed as one massive market failure; which is part of why I’m not a fan of using markets to solve problems of consequence.

People who build solar farms, hospitals, nuclear plants, bridges, aeroplanes, submarines, battery factories and any other bloody thing are unanimous in their use of planning; in contrast, people who love markets are people like politicians, lawyers and market traders who rarely build anything that doesn’t come in an Ikea box.

This article has tried to explain as non-technically as possible some of the problems that arise as penetration rates of intermittent electricity sources rise. I’ve used wind as a concrete example, but the same problems occur with any low capacity factor sources.

It may help people understand why Germany is burning half of her forestry output for electricity to provide some level of baseload power amid the renewable chaos. She could be, and should be, maximally expanding forests to draw down carbon, but instead, her logging and fuel crop industries are booming.

But the German use of baseload biomass to paper over renewable deficiencies isn’t just a love of lumberjacks and hatred for wildlife – when AEMO (Australian Electricity Market Operator) reported in 2013 on the feasibility of 100 percent renewable electricity, both her scenarios were “Sooo Last Millenium” and postulated a baseload system underneath the wind and solar components; either biomass (Log, Slash, Truck and Burn) like the Germans, or geothermal (ironically driven by heat from radioactive decay within the earth).

Technical readers should consult John Morgan’s articles here and here in addition to the various papers and studies he mentions.
New Matilda

What the wind industry hates most is facts: and what a bitter dish they must make, when plated up by the crowd that once loved them so dearly…

Facts

About stopthesethings

We are a group of citizens concerned about the rapid spread of industrial wind power generation installations across Australia.

Comments

  1. I love the analogy and you might find these numbers based on capacity factors in Europe Useful

    Renewable Energy: when will people just run the numbers accounting for capacity percentages.

    These capital and running cost comparisons strip out all the positive profitability effects of government regulation and subsidies that are being applied to Renewable Energy, those being the only things that still make Renewables a viable business proposition.

    Accounting for the capacity factors, (the actual electrical output as compared to the Nameplate capacity of European Renewable installations is about 18% overall), as they are reported by the Renewable Industry, and combined with comparative costings from the US government Energy Information Administration, the overall capital cost of all European Renewable Energy installations (Solar and Wind Power) averages out at about €29billion / Gigawatt.

    This amounts to at least 29 times the cost of a conventional gas-fired installation at about €1billion / Gigawatt, derived from the combination of:
    Onshore Windpower ~€14.2 billion/GW
    Offshore Windpower ~€41.4 billion/GW
    On Grid Solar Power ~€48.5 billion/GW

    According to Renewable Energy supporting sources by 2014 European Union countries had invested approximately €1 trillion, €1,000,000,000,000, in large scale Renewable Energy installations. This may well be an underestimate.

    This expenditure has provided a nameplate electrical generating capacity of about 216 Gigawatts, nominally about ~22% of the total European generation needs of some 1000 Gigawatts.

    But the actual measured output by 2014 reported by the Renewable Energy Industry sources has been equivalent to 38 Gigawatts or ~3.8% of Europe’s electricity requirement.

    Accordingly the whole 1000 Gigawatt fleet of European electricity generation installations could have been replaced with dispatchable, lower capital cost Gas-fired installations for the €1trillion of capital costs already expended on Renewable Energy in Europe.

    However Renewable Energy production is dependent on the seasons, local weather conditions and the rotation of the earth, day and night. The Renewable Energy contribution to the electricity supply grid is inevitably erratic, intermittent and non-dispatchable, (not necessarily available when needed). Renewable Energy is therefore much less useful than dispatchable sources of electricity, which can be engaged whenever necessary to match demand and maintain grid stability.

    So that 3.8% Renewable Energy contribution to the grid is often not available when needed and obversely its mandatory use and feed-in obligations can cause major grid disruption if the Renewable Energy contribution is suddenly over abundant.

    The Renewable Energy industry could not exist without the Government mandated subsidies and preferential tariffs on which it depends. Therefore it never be a truly viable business proposition. Viewed from the point of view of the engineering viability of a nation’s electrical grid, Renewable Energy would never be part of the generating mix without its Government mandate and Government market interference.

    The burden of these additional Renewable costs is both imposed on consumers via the increase in their utility bills and the cost hugely damages the viability of European industries.

    So the Green thinking especially in the UK in its enthusiasm to save the world from an indefinable but probably minimal threat in the distant future, will destroy Western civilisation long before the world fails from excessive overheating from CO2 emissions.

    For analysis of Renewable Energy performance and capacity factors quoted by Renewable Energy industry sources across Europe and see:
    https://edmhdotme.wordpress.com/european-renewable-energy-costs-and-performance-2014/

    references:
    EurObservER-Wind-Energy-Barometer-2015-EN-2.pdf
    http://www.eurobserv-er.org/wind-energy-barometer-2015/
    EurObservER-Photovoltaic-Barometer-2015-EN.pdf
    http://www.eurobserv-er.org/photovoltaic-barometer-2015/

    Cost comparisons are have been clearly made by the US EIA
    US EIA electricity_generation.pdf 2015 Table 1
    http://www.eia.gov/forecasts/aeo/electricity_generation.cfm

  2. BTW the renewables crowd, especially the BZE mob have mounted an all out attack on Geoff Russell at New Matilda in the comments section on his article. Some have even resorted to denying the requirement to supply baseload power, saying consumers just need to change their usage patterns. Sadly, these people have no conception of how electrical systems work outside their home.

    And then there was The Catalyst episode tonight, touting the home power battery as saviour for SA, with home storage covering the intermittency of renewable generation sources.

  3. Canadian Climate Guy says:

    Reblogged this on Canadian Climate Guy.

  4. The glaring hole in the article is the socialist comment about the market failing to anticipate the catastrophic effects of “renewable” generation. The failure was due to RETs and subsidies distorting the market – left alone to deal with real market economics, there would no uptake of renewable power generation outside of special, isolated locations.

    • Spot on Analitik. If it weren’t for artificial market distortions created by government interference i.e. the RET and a plethora of other mandated subsidies and regulations there wouldn’t be a wind industry or a solar industry for that matter. As people in this forum have pointed out many times before, the wind industry doesn’t run on wind it runs on subsidies.

      • Bon and Analitik, we concur. We would have ordinarily taken issue with an author that went so far off the rails. However, the real thrust of the article was the fact that one of their own has turned on wind power for obvious and practical reasons (intermittency, etc) – to STT that is a story in itself. We wouldn’t expect an avowed Marxist to change his spots when it comes to how markets operate (or in this case have failed to operate, due to government intervention). And, therefore, let that part of it go. STT followers have plenty of fodder to chew on here, if looking for the perversion caused to power markets by the LRET and its equivalents elsewhere. We were just delighted to post an otherwise well-reasoned article from Green/Left central that is critical of the greatest economic and environmental fraud of all time. Thanks for your comments.

    • Agree STT, point well made.

  5. FACTS; the curative drink that is SO refreshing 🙂

  6. No Turbines says:

    It’s said that it’s easier to fool someone than to convince them they’ve been fooled. When will everyone realise they’ve been fooled by the emperor’s new clothes?

  7. michaelspencer2 says:

    Oh dear, oh dear, oh dear! What’s this? Nasty facts! We can’t have those here – they’re politically incorrect …. 😦

  8. What shade of green are you? says:

    The Australian fellow to the ‘Breakthrough Institute’ knows this info all too well.

    http://thebreakthrough.org/people/profile/leigh-ewbank

    Posing as the Friends of the Earth’s Vegemite fairy, Leigh Ewebank is often busy at his keyboard assisting Labor senators, vilifying those speaking against wind energy impacts, shallowly scrutinizing senate inquiries as witch hunts and spruiking “the benefits” of wind power.
    But Leigh is the ‘Breakthrough Institute”s mole overseeing Australia’s well meaning but clueless anti-nuke academics and renewables lovers inevitably advocating tirelessly to construct the electrical infrastructure in place to ensure we have a grid with enough ‘smart’ capacity to accommodate nuclear energy.
    New Matilda, interested in reporting that?

  9. A good article. He could also have mentioned the problems that intermittent renewables cause in terms of network frequency volatility, which require additional thermal capacity to iron out (in addition to the standard supply excess/shortfall issues). And it’s also been found that solar panels leak some DC current into the grid, which deteriorates the wires.

    • That would overwhelm the minds of the target audience – the coffeeshop’s narcolectic staff analogy is enough to have them struggling to grasp the underlying issue,

      Geoff Russell has a solid enough scientific background to be aware of these issues. It’s just too bad that he has bought in to the whole CAGW scare but then his underlying socialist mindset makes him susceptible to that pitch

  10. Reblogged this on Climatism and commented:
    Boom!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: