Time to Get Serious: Fretting About CO2? Then Nuclear Power’s The Only Solution

If you’ve tuned in to someone banging on about ‘carbon pollution’ (aka carbon dioxide gas) and they aren’t banging on about nuclear power, it’s time to tune out.

STT promotes nuclear power because it works. Reliable, safe and affordable it’s the only stand-alone power generation system that does not generate carbon dioxide gas during the process; and, accordingly, the only generation system that can – as a matter of principle – withstand the ranting and raving of those obsessed with the purported effects of CO2 on the weather.

Jonathan Tennenbaum is one smart cookie. He received his PhD in mathematics from the University of California in 1973 at the tender age of 22. He’s also a physicist, linguist and pianist and the former editor of FUSION magazine, lives in Berlin and is a frequent visitor to Asia and elsewhere, consulting on economics, science and technology.

Jonathan provides a solid set of reasons as to why the world’s energy future is necessarily nuclear.

Don’t like CO2? Advanced nuclear power is the answer
Asia Times
Jonathan Tennenbaum
26 January 2020

So you don’t like CO2? What you need to know, then, is that there’s no alternative to advanced nuclear power.

Concern about the climate effects of man-caused CO2 emissions has prompted gigantic investments into so-called renewable energy sources: wind, solar, hydropower and biofuels. Meanwhile, in a huge mistake, nuclear energy – a reliable CO2-free power source producing 14% of the world’s electricity – has been left far behind.

Germany provides a bizarre example, albeit not the only one. Here the government’s commitment to its so-called climate goals has been combined, paradoxically, with the decision to shut down the country’s remaining nuclear power plants by 2022.

Would it not be more rational, if we believe that human emissions of CO2 are destroying the planet, to expand nuclear energy as quickly as possible, rather than shut it down?

Last December the influential German magazine Der Spiegel ran a story with the title, “Can New Reactor Concepts Save Us from the Climate Collapse?” The article reports on how numbers of international investors and firms, including Bill Gates and his TerraPower, are engaged in a race to develop advanced nuclear reactor technologies as the key to eliminating world dependence on fossil fuels – a goal that could never be attained by the so-called renewable sources alone.

Addressing readers who remain terrified of nuclear energy, Spiegel writes: “According to estimates, 800,000 people die every year from the smoke produced by coal, containing toxic substances such as sulfur dioxide, nitrogen oxides, mercury or arsenic. But concepts must also be demonstrated for how to dispose of the toxic substances contained in used-up photovoltaic cells.”

The magazine explains that “energy generation nearly always claims victims and creates some pollutants. The question is, what costs and risks are we ready to accept? What should we fear most: global warming, which is sure to come, or a possible regional reactor catastrophe? The objections to nuclear energy are justified. But in view of climate change, is it right to reject nuclear technology altogether?”

New reactor designs such as the traveling wave reactor, the molten salt reactor and small modular reactors promise to be much safer and cheaper than conventional nuclear power and have broader ranges of applications. Some could even “burn” nuclear waste as a fuel – eliminating the need for very long-term storage of radioactive material, which is a major argument against nuclear energy. Standardized modular construction would allow nuclear reactors to be factory-produced in much shorter times.

On this basis, a massive expansion of nuclear power worldwide might be accomplished within the space of 10-15 years. The rapid build-up of nuclear power in France, in response to the 1973 “oil shock,” provides a certain historical precedent.

New agenda
There is no doubt that nuclear energy is back on the world agenda, even for many of those who have been bitterly opposed to it in the past. And nuclear energy – in the form used today – still has serious problems. But new reactor concepts are on the table, which addresses those issues and could completely redefine the role of nuclear energy in the world economy.

I shall describe some of these reactor concepts in a bit of detail. But first I should try to establish clarity on a crucial point.

I believe we are facing a branching point in global energy policy. What should be the priority? Assuming it should be a goal to drastically reduce world emissions of CO2 in the medium and long term – which I don’t want to argue about here – is it wise to invest so much in renewable energy sources, as many nations are doing today? Or should we allot only a limited role to the renewables, and go for a massive expansion of nuclear energy instead?

I will not discuss nuclear fusion in its various forms, an area of great importance for the future, but whose availability for large-scale energy generation cannot be predicted with certainty at present; nor the potentially game-changing area popularly referred to as “cold fusion” (better called “low energy nuclear reactions” or LENR). “Cold fusion” was the subject of a previous Asia Times series.

Now let’s deal in more detail with a very big question: To what extent could so-called renewable energy replace the use of fossil fuels?

According to Bloomberg New Energy Finance, $288.9 billion was invested into renewable energy in 2018, the bulk of which went into wind and solar energy. Despite this, CO2 emissions worldwide continue to grow relentlessly.

China, for example, leads the world in the size of its investments into renewable energy, with over $100 billion invested in 2018 alone. At the same time China also leads the world in the construction of new coal power plants, which are the single biggest source of CO2 emissions by human activity. Since the start of 2018, China has brought 42.9 gigawatts of new coal-fired power plants online, with another 121.3 GW under construction and 200 GW or more in various stages of planning.

India also continues to expand its coal power capacity, with 36 GW under construction. Last July the Indian power ministry’s chief engineer declared that coal-fired power generation capacity is expected to rise by 22.4% in the coming three years. The ongoing expansion of coal power in China and India does not reflect a lack of concern about pollution and climate change; the problem lies above all in the economic, physical and technical constraints under which these nations must design their energy policies.

The simple fact is, that in the foreseeable future no amount of investment into renewables, however large, will be sufficient to eliminate humans’ dependence on coal, oil and natural gas. That is, unless we are willing to collapse the world economy.

If we are really committed to reducing CO2 emissions, then there is no way around nuclear energy, and lots of it. The reasons are elementary.

Suppose that by some means we could completely eliminate the use of fossil fuels for transport and heating. This is hardly conceivable without greatly increasing the global consumption of electricity, which can already be projected to more than double over the next 25 years. Where will all the electricity come from?

If we insist on “CO2-free” sources of electricity, then the number of realistic options is small. When it comes to large-scale power production they are limited essentially to hydroelectric, wind, solar and nuclear energy. Electricity generation from biofuels, which can claim to be “CO2-neutral”, might contribute a few additional percent.

Unfortunately, economically viable hydropower is limited to certain geographical locations, and its potential for further expansion is strongly constrained by environmental, economic and social factors as well as very long lead times for large projects. Leaving these problems aside, hydroelectricity might hypothetically be increased to about three times its present level in the long term. Given the projected growth of electricity demand, the share of hydropower could at best grow from 16% today, to 25% in 2050. Where will the other 75% come from?

Wind and solar power have some obvious strong points. They require no supply of fuel and their total capacities can be expanded quickly, at relatively low unit cost, as is occurring today around the world. At the same time, wind and solar energy have a fundamental drawback: their output fluctuates depending on conditions that are outside human control. This makes it impossible to fit the output curve to the demand curve, even approximately.

Solar panels produce no electricity at all at night, of course, and not much on rainy and overcast days. The electricity output from wind power installations can fluctuate wildly even from one hour to the next, and even when averaged out over a large region. In contrast, conventional or nuclear power plants provide a continuous, steady supply of electricity, at power levels which can be precisely controlled.

Quite apart from the intermittent character of solar and wind energy, the so-called renewable energy sources all suffer from the drawback of low intrinsic power density: the renewables require vastly larger areas and/or larger numbers of operating units to reach the same output as a modern, compact coal, gas or nuclear plant.

Under typical weather conditions of central Europe, for example, it takes some thousands of large wind turbines, or solar cells covering a total area of the order of 100 square kilometers, to generate the same yearly quantity of electricity as a single 1 GW conventional or nuclear power plant. Building a wind turbine capacity of 1 GW requires 50-100 times as much steel and cement as a nuclear power plant with the same capacity.

I mentioned biogas. Electricity production from biogas could be included as “CO2-neutral” in the sense that the CO2 emitted by the combustion of biogas ultimately derives from the photosynthetic capture of atmospheric CO2 by crop plants.

The World Bioenergy Association estimates that biogas has the future potential to provide an amount of energy equivalent to about 25% of that presently generated from natural gas (in all its uses) in the world economy. If 100% of that biogas were used to produce electricity – which is highly unrealistic – this would cover about 5% of today’s electricity consumption.

Large-scale biogas production – as opposed to smaller-scale utilization of organic wastes – de facto means using agricultural crops as solar collectors. Unfortunately, photosynthesis in plants is 10 times less efficient in capturing solar energy, than modern solar cells. This makes the production and use of biofuels for large-scale electricity generation an extremely resource-intensive process, requiring large land areas, water resources, machinery, transport and labor per unit output – resources that might otherwise be applied to food production and other uses.
Asia Times

Nuclear energy to the rescue: France got it right
Asia Times
Jonathan Tennenbaum
30 January 2020

Nuclear energy – which today means nuclear fission – currently supplies 14% of the world’s electricity. At present 450 nuclear power reactors are in operation world-wide, and 52 new reactors are under construction. In 2019 four reactors went on line: two in China, one in Russia and one in South Korea. A total of 15 reactors are scheduled to begin operation this year, in China, India, Japan, South Korea, Russia, Belarus, Slvoakia and the United Arab Republic.

This looks impressive, but the new capacity is hardly enough to make a dent in global CO2 emissions. It does attest to the fact that nuclear energy – despite the accidents in Chernobyl and Fukushima – continues to be regarded internationally as a reliable and economical source of electricity, having a large potential for future expansion. With available uranium and thorium breeding technology – assuming it were used on a large scale – the amount of economically exploitable fuel resources would be enough for nuclear energy to provide the equivalent of entire present consumption of electrical energy for centuries.

One should bear in mind that, from 1 kilogram of enriched uranium, present-day light water reactors (LWRs) can produce the energy equivalent of roughly 150,000 kilograms of coal. A uranium-breeder reactor can derive from 1 kg of natural uranium the equivalent of over 1 million kilograms of coal. A similar ratio applies to thorium in a thorium breeder reactor.

France’s answer to ‘oil shock’
Could nuclear power be expanded rapidly enough to eliminate the use of fossil fuels for electricity generation in the foreseeable future? Practically speaking, it would be sufficient to have nuclear reactors generate 75-80% of electricity requirements, if renewable sources were used in a rational way.

Today approximately 75% of France’s electricity is produced by nuclear plants. The emission of CO2 per unit of electricity generated is one of the lowest in the world. (The very lowest rates are achieved by countries with large amounts of hydroelectric resources.) France’s achievement came about primarily because of the 1973 oil crisis, which laid bare the vulnerability of the French economy to disturbances in its external supply of energy. The slogan went around: ”We have no oil, but we have ideas.”

In a speech on national television in March 1974 French Prime Minister Pierre Messmer announced an ambitious plan to make nuclear-generated electricity the foundation of the nation’s energy system. He declared “France has not been favored by nature in energy resources…. There is almost no petroleum on our territory, we have less coal than England and Germany and much less gas than Holland…. Our great chance is electrical energy of nuclear origin…. We will give priority to electricity and in electricity to nuclear electricity.”

Following the Messmer Plan, France’s nuclear power expansion proceeded at a rapid pace. During the 1980s, 44 new nuclear power stations went on line – an average of 4 per year. Nearly all were standardized in design, with two basic types producing 900 and 1300 MW of electric power each. Standardization reduced costs greatly, and construction times for most of the plants were between 5 and 7 years.

In less than 15 years the percentage of electricity generated from nuclear plants rose from about 7% percent in 1975 to over 75% in 1990. The result was overall an economic success, and it enjoyed broad support in the population.

What can we learn from France’s mobilization for nuclear power following the 1973 “oil shock”? I see no reason why something similar could not be done on a global scale, if governments were to adopt suitable policies. The notion that nuclear energy could usher in an era of CO2-free energy production is by no means a utopian dream. That applies at least to electricity production, which is presently responsible for about 40% of global CO2 emissions globally.

Environmentalist mistake
The irony of the situation is that the environmentalist movement is to a significant extent responsible for the continued dependence on coal and gas power plants.

It is quite conceivable that we would have had practically CO2-free electricity today if it had not been for the intense campaigns against nuclear energy, mounted continuously for over half a century in the United States and Western Europe.

Although there are good reasons to be concerned about the safety of nuclear power plants – reasons we will discuss – the political opposition to nuclear energy has on the whole been characterized by ideology and hysteria rather than rationality.

In my view the rational response to the accidents in Chernobyl (1986) and Fukushima (2011) would have been to demand fundamental innovations in the design and operation of nuclear power plants – such as those I shall describe later – rather than attempting to block the development of nuclear energy altogether.

One should note that, even taking Chernobyl and all the other nuclear accidents into account, the losses of human life attributable to the use of nuclear energy for power generation have been negligible in comparison with the human cost of generating equivalent amounts of energy from fossil fuels. The magazine Der Spiegel makes exactly that point in the quoted article.

As far as renewables are concerned, the human costs are hard to evaluate, but they certainly much higher than those of present-day nuclear energy. The reason is obvious: the very large number of units needed for a given output. At present there are about 350,000 wind turbines operating world-wide, a substantial portion of which are mounted on towers rising 100 meters or more above the ground. Common sense tells us that accidents will constantly occur during the construction and maintenance of such structures.

Worldwide media reports monitored by the National Wind Watch reveal a steady stream of injuries and fatalities, no doubt underreported by a large factor. The wind power industry is not required to report accidents.

The installation and servicing of millions of rooftop solar panels is another significant source of injuries and fatalities connected with so-called renewable energy sources.

The lesson here should be that there are no perfect, “soft” solutions; there is no way to produce energy on the scale the world requires without incurring risks and losses. These must be weighed seriously, in a rational manner. Efforts to reduce energy consumption also entail risks and losses.

It is encouraging to see that a number of leading environmentalists, who were previously passionately opposed to nuclear energy, have since changed their attitudes. For example Baroness Bryony Worthington, a co-author of the Climate Change Act in Great Britain and later director of the European branch of the Environmental Defense Fund, has become a prominent supporter of the molten salt reactor.

We need advanced reactors
Nuclear power is an extraordinarily complex, capital-intensive technology. So great are the scientific and technical challenges of mastering nuclear fission reactions as a power source that it is hard to imagine how civilian nuclear power would have emerged if not for the vast resources devoted to nuclear weapons development during World War II and the Cold War.

One can only marvel at the creativity, daring and technical virtuosity of the nuclear engineers and scientists in the 1950s and 1960s. A vast domain of applications of fission energy was studied with the help of experiments and prototype devices. Practically all the important ideas in the domain of nuclear energy – including the “advanced” reactor types being developed now – emerged in embryonic form in that early period.

Today it has become a habit to design and simulate reactors on computer screens, but never build them. In 1950s and 1960s, by contrast, progress went hand-in-hand with building real systems and studying their performance.

Unfortunately, in the transition to commercial electricity production by nuclear reactors, most of the innovative reactor designs developed in the early period, were dropped in favor of a single basic type: the light water reactor (LWR). Here the starting point in the West was the successful US Navy program to develop reactors to power submarines. Other reactor types, such as so-called fast breeder reactors, have so far played only a marginal role.

In retrospect the fixation on LWRs as the mainstay of civilian nuclear energy, to the virtual exclusion of other types, was a mistake. The main reason was cost-cutting in the field of R&D, more than intrinsic advantages of LWR reactors. Through lack of developed alternatives, nuclear energy became stuck with the limitations of LWRs. We need to correct this.
Asia Times

About stopthesethings

We are a group of citizens concerned about the rapid spread of industrial wind power generation installations across Australia.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: